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ABSTRACT

In an earlier report , a new class of multilayer bounded
cellular automata was defined and shown to improve the lower
bound recognition time for many basic array recognition tasks.
We continue our investigation of pyramid cellular acceptors
by presenting new results on their capabilities as two-
dimensional pattern-recognizing machines.
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1. Introduction

A central concern of image analysis is to construct

algorithms for extracting a description from a given picture.

In general , this involves segmentation of the picture into

parts , measurement of properties of the parts , and determina-

tion of relations among the parts . To this end , many basic

picture analysis techniques have been developed . For example ,

thresholding, template matching , edge detection and connected

component analysis are a few of these techniques.

The design and evaluation of e f f ic ient  image analysis

techniques and algorithms have not been adequately researched .

In particular, the tradeoffs between computer arch itecture and

algorithm complexity for a given problem are of considerable

interest because of the high data rates necessary in many

image application areas, while hardware costs continue to drop.

Furthermore , many basic image analysis operations operate

independently on each point of the image and its neighbors.

Cellular parallelism is very efficient in computing such local

operations. In fact, the most obvious technique computes each

point ’s new va lue independently, leading to a very inefficient

serial algorithm (due to neighborhood overlap) , while being

ideally suited for implementation as a parallel algorithm.

In parallel computations a primary concern is the distri-

bution of results among the processors. The arrangement of the

data and the processors handling them must be considered in

light of complicated data flow that may be required. This
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problem is especially evident in cellular architectures , in

which processors are un iformly interconnected to a fixed

number of neighbor processors. Under conditions where conununi-

cation between distan t processors is necessary , unavoidable

ine fficiencies may arise .

With these factors in mind , we introduced in [11 a pyramid

cellular machine, in which the processors, or cells , are con-

figured in a logarithmically tapering pyramid . Each pixel

in the input picture is associated with its own cell in the

base of the machine. Each cell operates on its own local

memory and has its own local control , which is globally syn-

chronized by a discrete-step clock. Each cell can examine

the memory contents of itsnine neighbors -- its “fa ther ” cell

in the layer above, its four nearest neighbors in its own layer ,

and its four “son ” cells in a two-by-two block in the layer

below. The model is defined by stacking cellular array auto-

mata, where each layer contains one quarter the number of

processors in the layer below it.
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In [1] this new model’s computing power was compared

with that of several others, and some basic pyramid recognition

algorithms were described . It was shown that pyramid cellular

acceptors can solve many nontrivial tasks in time proportional

to the logarithm of the diameter of the input. This is in

constrast to conventional bounded cellular acceptors which

require at least time proportional to the diameter of the

input for recognition. For the most part, however , the

recognition results presented in [1] were confined to the one

dimensional case, i.e., when the pyramid reduces to a tri-

angle of processors and the input is a string of symbols.

Thi s report extends the analysis of cellular pyramids by

providing new results on recognizing two-dimensional picture

languages. We first review the definition of a cellular

pyramid in Section 2. Section 3 describes some basic pyramid

recognition algorithms, including local property detection and

counting , palindromes , rectangles and squares. In Section 4

we compare pyramid acceptors with finite-state acceptors and

bounded cellular acceptors.

The cellular pyramids defined in this report are, in

general , nondeterministic ; but the algorithms given in this

report are all deterministic. Some results on nondeterministic

cellular pyramids will be presented in a subsequent report.
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2. Definitions

In this section we review the definitions of a bounded

cellular array acceptor , pyramid cellular acceptor , and

bottom-up pyramid cellular acceptor. We also introduce , for

comparative purposes in Section 4 , the up-down pyramid cellular

acceptor.

A bounded cellular array acceptor (CA) is a finite ,

rectangular array of identical finite state machines (FSM’s),

or cells. Each of these cells is a quadruple M (QN,QT,6,A),

where is a nonempty,  f inite set of states, 
~~~~~~ 

is a

noneinpty , finite set of input states, and A
~~

QN is a nonempty ,

5f inite set of accept, or final , states. + 2 is the

state transition function, mapping the current states of M

and its four nearest neighbors into a set of possible next

states for M. If M is deterministic , the range of 6 is a

single state from Associated with the CA is a special

boundary state 1€ which can never be created or destroyed

by 6.

A configuration of a CA is an assignment of states from

to each cell in the CA. A step of computation consists

of a single application of the state transition function 6

simultaneously at each cell. An input configuration is a

configuration before the first step. If a cell is on the

border of the array its initial state must be the boundary

state I, otherwise its state may be chosen from Cells

initially in the boundary state are called boundary cells; 
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all others are called retina cells. An input configuration

is accepted by a CA if at some step the upper-left corner

retina cell enters an accept state. The set of input con-

figurations accepted by a given CA defines its language.

A pyramid cellular acceptor (PA) is a pyramidal stack

of CA’s, where if the bottom array has retina siz e 2r by 2r

then the next lowest array has size 2r~~. by 2r-l, and so on ,

until the (r+l)st layer consists of a 1 by 1 CA. This apex

cell in a PA is called the root. Each cell is an identical

FSM M=(Q
N
fQ
T~ 

6 ,A), where 
~N’ ~T’ 

and A are defined as above.

10The transition function ô:QN 
+ 2 maps lO-tuples of states

into sets of states. That is, each cell has nine neighbors --
four son cells in a two-by-two block in the layer below, four

nearest neighbors in its own layer, and one father cell in

the layer above. More precisely, let M be the (i,j,k)th cell

in a PA, where M is in the ith row and jth column of retina

cells in the kth layer from the bottom. Then M’s father is

cell (Ii/21,Ij/21, k+ 1) , where xl denotes the smallest integer

greater than or equal to x. M’s brother cells are (i-l ,j,k),

(i,j+1,k), (i+l,j,k) and (i,j—1,k), and its son cells are

(2i ,2j,k—l), (2i ,2j—l ,,k—1), (2i—1 ,2j,k—l) and (2i—1, 2j—1 ,k—1).

The f igure in Section 1 illustrates this neighborhood.

A conf iguration of a PA is an assignment of states from

to each cell in the PA. An input configuration for a

pattern of size 2~ by 2~ is an n+3 high stack of CA’s. The

bottommost layer is a size ~~~~ by 2
n+]. CA , where every cell ’s



initial state is the boundary state #. Tha i~ext layer up is

called layer 0 and is a size 2~+l by 2~+l CA, whose border

cells have ini t ial  state # , while the other cells define the

base array where the input pattern is “stored” —- that is,

their initial states are chosen from 
~T 

and define the input

image to be recognized . Layer 1 is a size 2~~~+l by 2n l ~ 1 CA ,

with retina cells init ial ized to the quiescent state b E Q T.

Layers 2 through n are similar to layer 1 except each layer ’s

retina has one—quarter the number of cells in the layer below

it. Above layer n is a single cell with initial state *

which is the father cell of the apex cell in layer n.

The height of a PA is the length of the shortest path

from the root to a cell in the base array. Thus a PA with

base size 2n by 2n has height n and ~~~~~~~~~~~ .
~.]• =

retina cells. An input image is a 2~ by 2n array of states

from for some n � O , which defines the initial states of

the retina cells in the base array (layer 0). A step of

computation consists of a single state transformation performed

simultaneously at each cell. An input configuration is accepted

by a PA if the root enters an accept state after a finite

number of steps. The language accepted by a PA is the set of

all input images accepted by it. (As with CA’s, the language

is def ined for all legal input sizes and is not associated

with a particular instance of a PA which has a specific height

and recognizes only images of a specific size.)

_ _ _ _ _  
_ _-  . . - _ _ _



A bottom-up pyramid cellular acceptor ( EPA) is a PA whose
5 Q

state transition function is modified to be + 2 N In

this simplif icat ion of PA’ s , the next state of a cell depends

only on the current states of that cell and its four sons.

Hence information can only move up the pyramid. All other

aspects of the PA hold for a BPA .

Finally, we define a second simplification of PA’s which

gives another alternative neighborhood definition for restrict-

ing information transmission through a cellular pyramid. An

up-down pyramid cellular acceptor (UDPA) is a EPA whose state

6transition function is defined as 6:QN 
+ 2 . Here the next

state of a cell also depend s on the state of its father , so

that state information can move up and down , but not sidewise ,

through the pyramid.

The purpose of investigating these simplifications of the

original model of computation is not because of any hardware

considerations for simplifying the interconnection l inks.

Rather , it is intended as an aid in studying the t radeoffs

between neighborhood size, time and space (state set cardinality)

bounds. By comparing variations of the model we gain insight

V 
into how computing power is affected by incrementally adding

more channels for information flow.

— —-— ---- _ _ _ _ _ _
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3. BPA Algorithms

This section considers several basic tasks for BPA ’s,

including detecting and counting arbitrary local patterns ,

and recognizing palindromes , rectangles and squares.

We assume from now on that the size of the pyramid base

is 2” by 2n, so that the height is n. The layers will be

numbered 0 ,1, . .  ., n starting from the base . To simplify the

exposition, BPA ’s will not be defined in terms of states and

transition functions; rather , we will specify algorithms in

terms of transmitting and receiving information between son

and father cells.

j
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3.1 Local Property Detection

In this section we consider the problem of detecting

the presence or absence of a d by d pattern* in the input of

a BPA . The difficulty of this problem is that such a pattern

can be badly positioned with respect to the pyramid so that

only cells at an unbounded height above the base can see all

of it. Furthermore , since a d by d block of the base must be

matched against the given pattern at the lowest common ancestor

of its d 2 base cells (because this cell may be the apex cell

of the BPA), the number of matchings to be performed by a

cell increases exponentially with its height. That is, a cell

C in layer k must check all those d by d blocks containing

base cells which extend across the “cracks” between C ’s sons ’

bases. The figure below illustrates the base cells of C which

must be considered in the matching process at this cell. It

I I T .
~~~~~~~~ 

_ _  _ _

~ øv,

*Sjnce any arbitrary finite pattern can be padded with “don ’t
care ” symbols to obtain an equivalent square pattern , there
is no loss in generali ty in making this restriction.
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is easily verified that there are 2(d_l)2k _ 3(d_ l )2 distinct

d by d blocks to be checked by C.

A one-dimensional solution to this problem was

jiven in El], but that solution does not generalize to two

dimensions.  In this section we present a two—dimensional

solution .

Let C . denote the f i rs t  (leftmost)  d—l symbols in

cell C ’ s ith row, and let C! denote the last (rightmost) d—l

symbols in C ’ s ith row . First , construct the EPA ~c that

cells in layer k count modulo 2k and output alternating

leng th_ 2 k~~ sequences of U ’ s and l’ s [1].

Suppose cell C at height ó=Ilog dl repeatedly

receives a copy of the entire base beneath it and

a) decides whether or not the pattern is entirely

contained with it.

and b) modulo 26 starting at time 6 outputs C 1 and C~
for l~~~i~~~2 6 .

Then a cell C in layer 6+1 can use its modulo 2 6+1 counters

and the outputs of its four sons to compute its own and
6+1C . values (modulo 2 ) ,  sInce

~ 
[C (N W) ]

1 
, l~ .i~ .26

C . =
1 

(C (SW) I i-26 , 2
6 <i ~ 2~~

1

_ _ _ _ _ _ _- V -~~~~ -.



4
and

r EC (NEn~ , l~~ i~~ 2
6

C! =
1 L [C (SE) i—26 , 2~ < i ~ 2

6+1

where C (NW) is C’s northwest son, etc.

Simultaneously, C can decide whether or not the

pattern appears anywhere within its base as follows. Since

we need only check d-by-d blocks which are not entirely con-

tained in one of C’ s son ’s bases, we need only reconstruct the

6+1 .2 by 2(d-l) vertical band centered on the middle column of

C’s base in order match across the vertical crack. In fact,

only a d by 2(d-1) running window of the band needs to be

stored by cell C at any time. Using its modulo 26+1 counter

and its four sons ’ outputs , C can scan its vertical band

since the ith row of the band is computable at time 6 + i

6+1(modulo 2 ) by

[C(NW)].H (C (NE)]~ if ~~~~~~~~

or [C (SW)] .2 611 [C(SE)].2 6 if 26~. j £ 26~
4

where denotes concatenation . After time d+6 C can begin

checking whether or not the entire pattern is present anywhere

in its d by 2 (d-1) window .

_ _ _ _ _ _ _  
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In the same way C can simultaneously scan the
6 -i- ].2 (d-l) by 2 horizontal band centered on the middle row of

C’s base in order to match across the horizontal crack. (This

means that the cells at height 6 will also have to output the

top and bottom d-l symbols in the ith column , l~~ i~~ 2
6,

modulo 26.) If at any time the pattern is found in either

band , a success signal is immediately sent up the BPA to the

apex cell.

Similarly, each cell in layer k > 6+1 behaves like

t~he cells in layer 6 + 1, sequentially scanning their length

vertical and horizontal bands starting at time k. Hence,

if the pattern is detectable in layer k then the apex cell

will know this at a time no later than k + 2
k 

+ (n-k ) = 2
k
+

In the worst case the pattern is detectable only by the apex

cell , and time 2nta(d) + ntb (d) is required , where ta (d) is

the time needed to update two d by 2(d-l) windows and search

for the d by a pattern within them, and tb (d) is the time
needed to copy four length d vectors.

If we assume that the d by d pattern occurs at

least once and is equally li kely to appear anywhere in the

2~ by 2n base and d < < n, the 0 (diameter) worst case bound

given above reduces to O (log diamater) time in the average

case. That is, there are 4x~14k cells in layer k, and each

checks 2(d_l)2 k - 3(d-l)2 d by d blocks for the presence of

the pattern. Thus in layer k (k > log d) a total of

22n1[(2 (d_l)2 k - 3 (d_l)2)/22k] d by d blocks are inspected.

-
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It is easily verified that after processing the (6+2)nd

layer over half of the 22n blocks have already been checked .

Since the apex cell will, know whether or not the pattern is

detected in any of these layers by time 4d ta (d) + fl tb (d),

the 0 (log diameter) average time bound results.

HI
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3.2  Local Property Counting

Counting the number of occurrences of some particular

symbol z in a BPA ’s base is an immediate generalization of the

one-dimensional counting algorithm (1], which required 0 (log

diameter) t ime . The problem of counting arbitrary local

patterns is more difficult because cells at all levels must

detect and count instances of the pattern and then add their

counts in with all other cells’ counts.

First, we show that a ETA can count the number of

occurrences of an arbitrary local property in 2 log diameter

time steps. That is, the apex cell will output, at time steps

n through 2n, the n+l bits in the binary representation of

this number , least significant bit first.

Suppose that the desired pattern has length d=26.

Each cell in layer 6 receives at time 6 a copy of the entire

portion B of the base below it and outputs, at the end of

step 6,

(1) a 1 if B matches the pattern, and a 0 otherwise ;

(2) the initial d-l length segment of B, ca ll this

string L;

and (3) the terminal d—l length segment of B, call this

string R.

Now consider a cell C in the (k+l)st layer. By the induction

hypothesis , it receives from its sons at the ends of time

steps k,...,2k the number of instances of the given pattern

and the values of L and R in their base segments. Let

_ _ _ _ _ _ _ _- - • V • V . ~~~~ _ _ _ _ _ _



be the values for C’s left son, and L2,R2 the values for C’ s

right son . Then Lc=L1 and Rc=R 2 can be output by C at the

end of time step k+l .  In addition , R111 L2 is tie length
2(d- l)  segment centered on the middle of C’ s base . At most

d— l occurrences of the pattern can extend across C’ s mid—base

cell and all the information for checking these d—l positions

is contained in the string R111 L2 . Hence at time k+l C can

compute and store the number of tim~~, S, that the pattern is

found crossing C’s midpoint and then add the least signif i-

cant bit of S to the sum of the least significant bits of its

sons’ counts, which has just been computed . At step k+2 C

computes its next least significant bit by adding the next

bits from its sons and the next bit from S. This process is

repeated at steps k+3,.. . ,k+6, since S is a 6—bit value. For

the remaining steps k+6+l,...,2k+2 C just sums the next least

significant bits from its sons. Clearly C’s outputs at steps

k+l ,. .., 2k+2 = 2(k+l) are just the bits of the sum of its

sons ’ counts and its own count , i .e . ,  the number of times the

given pattern occurs in C’s base segment. The total time

required by the algorithm is 2n ta + fltb (d), where ta is the
V 

time needed to perform bit addition and tb (d) is the time

required to count the number of matches of a length d pattern

in a length 2(d-l) string.

This algorithm does not generalize to two dimensions

because , as we noted in Section 3.1, the number of match tests

to be performed at a cell is now unbounded . Hence a cell

.1: 
_ _ _ _ _  
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cannot store this number in order to bit-serially add this

count in with the counts of its Sons.

By allowing sidewise transmission in the base , counting

arbitrary local patterns reduces to the problem of counting

occurrences of a particular symbol ,since the base array can

detect and mark all occurrences in 2 (d- l)  steps. Similarly ,

other algorithms which require information from cells only a

bounded distance apart can profit from sidewise transmission

in the base, which requires only a bounded amount of time.

For example, we can compute the Euler number of a binary image

in 0(log diameter) time on such an extended EPA because it

is a property that is computable from measurements taken on

2 by 2 windows [2]. On the other hand , counting the number

of connected components in a binary image using a parallel

shrinking process [3,4] in the base array to mark components,

and then using the upper layers of the pyramid to count these

marks , provides no advantage , since the shrinking alone

requires up to 0(diameter) time.

—V.— 
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I-
3.3 Palindromes

In two dimensions the palindromes may be defined

in alternative ways depending on the axis of symmetry chosen.

Vertically symmetric palindromes are defined as those arrays

which are symmetrical about their central column. That is,

if the input symbols of a 2~ by 2’~ array A are indexed in

row—major order and A(l,1)=A(l,2n), A (l,2)=A(1,2n_l),...,

A(l ,2n l _l)=A (l,2n 1 ),.. .,A(2n,2nl _l)=A (2n ,2n l ) then A is

a palindrome.

Before presenting the algorithm we first show how

a cell in layer k of a BPA can be made to count modulo abck+d

- - ck+d d c k  kfor arbitrary natural numbers a,b,c,d. Since ab =a(b ) (b ) =ef

we need only show how a cell in layer k can have a modulo efk

counter for constants e and f. We have shown previously [1]

how such a counter is built when e=l and f=2. In the general

case, base cells are defined to output l’s every e time steps,

and non-base cells output l’s every fth time that their sons’

counters output l’ s. Thus layer 0 (base) cells are modulo

ef °=e counters. If cells in layer k are counting modulo efk,

then readily layer k+l cells ’ f—step delay makes these cells

k k+lf(ef )=ef counters.

V Recognizing palindromes with a BPA, as in the one-

dimensional case, is based on performing a fixed sequential

scan of its base. This is implemented by having cells in the

kth layer count modulo as described above. The counters

can be easily modified so as to output 0 for the f irst 4k-l

____________ - - — —. — .—..—-————— —.



steps , 1 for the next 4k~~ steps, 2 for the next , and 3 for

the last 4 1 steps. If a father ’s counter is 0 it copies

its NW son’s value , if it is 1 it copies its NE son ’s value ,

if it is a 2 it copies its SW son ’ s value , and if it is a 3

it copies its SE son’s value. Thus a cell in layer 1 copies

its sons’ values at successive steps in the following order :

O l A cell in layer 2 copies the values of its NW son for
2 3

four steps, then its NE son for four steps, etc., so that it

repeatedly copies the values of its base cells in the following

order:

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

By induction , it follows that a cell in layer k copies the

values of its base cells at times k,k+1,.. .,k+4k_l; and this

process repeats modulo

We can obtain a mirror image of the above scan by

simply changing the order of scanning one’s sons to:

It is readily seen that running both scans simultaneously

means the apex cell copies all pairs of symbols in base cells

which are vertically symmetric about the central column of

the base. If all point by point comparisons match , therL the

EPA can accept its input. The total time required is n+4~ -l.

This is nearly optimal , since it can be shown that the lower

bound for recognition of palindromes on a BPA is 4’~/2 by

-- --V.-- -~~~~r —  — — ~~~~- . V.-
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remarks similar to those in (1]. Alternative definitions of

two-dimensional palindromes, for example by using horizontal

or central symmetry , can be handled by essentially the same

method. A related question which is still open is whether

the apex cell of a BPA can copy the symbols in its base in

raster order.

V -~~~~~~~~ -_ _



3 .4  Rectangles and Squares

Let the language L~~~CT consist of the class of

input images which contain a single solid rectangle of l’s

(with sides paral lel  to the sides of the base) on a back-

ground of 0’s. Blum and Hewitt have shown [5] how an FSA

on a two-dimensional tape can recognize L
~~CT 

by checking

each boundary point’ s local slope . Minsky and Papert (2 ]

define a diameter-limited perceptron to recognize L~~~CT by

counting the local property “corner.” That is, input image

B 
~ 

1ff

1 0(the number of occurrences of pattern 
~

+ (the number of occurrences of pattern ~ I) ~ 4

where the patterns also include all 90° rotations of each.

A BPA is not well suited either for simulating the

moves of an FSA (see Section 4) or for counting local properties

(Section 3.2). [If we allowed the BPA to have sidewise trans-

mission in its base , then the Minsky and Papert method could

be implemented on a BPA and would require 0 (log diameter)

time to be recognized.] We now show how a BPA can recognize

L
~~cT 

by a third method which compares consecutive row cross

sections of the base.

Each row of an input image contained in L
~~CT 

must

be of the form 0x 150t• We shall now prove that each cell C

in layer k can output at time step8 k to 2k the k+1 bits in

the binary representations of r,s, and t for the top row and

_ _ _ _ _  ~~- - -. —V.-.



u,v , and w for the bottom row in C’s subbase. Associated

with the first (least significant) bit of each number will

be a flag indicating whether or not the value is zero.

Clearly the cells in layer 1 can compute this

information. Now consider a cell C in the (k-4-l)st layer .

By the induction hypothesis , it receives from its sons at the

ends of time steps k,. - . ,2k the values of r,s,. . . ,w in their
base segments. Let the subscripts 1,... ,4 denote the north-

west, northeast , southwest, and southeast sons of C, respectively.

Then C’s base has the following form

r1 S
1 

t3, r2 ~2 ~20 1 0 0 1 0 row l

U
1 

V
1 

W
1 

U
2 

V
2 

W
2 ko 1 0 0 1 0 row 2

r3 S
3 

t3 r4 s4 t4 k0 1 0 0 1 0 row2+ 1

u3 v3 w3 u4 v4 W
4 k+l0 1 0 0 1 0 row 2

so that C computes its own r, s and t values as follows :

~- )  if s1=~ and 
~2
=° then r=r1+r2, s=0, t=0

2) jf and s2=0 then r=r1, s=s1, t=t1+r2
3) if s1=0 and s2~ 0 then r=r1+r2, s=s2, t=t2

~ ~~ ~l~° 
and 52~

0 and t1=0 and 
r
2=0 then r=r1, s=s1

+s2,

t=t2

If none of these conditions holds, a failure signal is

immediately propagated up to the root. The addition is

performed as in the BTA counting algorithm (Section 4.2 of

- -__

_ _



(1]) where C functions as a bit serial adder. Similarly, C

computes u , v, and w from u3,v3,w3,u4,v4 , w4.

Simultaneously, C checks whether the two middle

rows in its base, as specified by

u V w U V W
o h l b o l o 2 l 2 U 2

r s t r S
4 

t40 1 0 0 1 0

match , are of the form 0X1Y0Z and are consistent with its

top and bottom rows. Say these two middle rows are of the
xl Yl Zl 

)C
2 ~

‘2 Z2form 0 1 0 and 0 1 0 , respectively. Then , if y1~ O

and y2~
O , we must be considering two rows intersecting a

potential rectangle. Consequently, only if x1 x2, y1 y2,

and z 1=z 2 can both rows be part of a legal rectangle . If

y1=y2=0, both rows ar~ scanning only background ; if only one

of y1 and y2 is nonzero, we are seeing either the top or

bottom of the rectangle. In these cases there is no matching

to be performed , only a consistency check that prevents multi-

ple rectangles from being accepted . Details will not be given.

By transitivity and the induction hypothesis we

now know that all nonzero rows in C’s base segment are

connected and have the same description , since every consecu-

tive pair of rows within C’s subpyramid has been matched .

If a cell ever detects a completed rectangle , a success signal

is propagated to the apex cell which , if it receives exactly

one such signal, accepts its input. The total time required

by the algorithm is 2flta where ta is time needed to perform

_ _ _  - V . -  - —~~~ ---



one step of the serial addition process and the “sewing ”

together of quadrants by matching boundary rows.

We now indicate how a BPA can detect the fact that

the rectangle of l’ s in its base is a square . Define LSQ to

be a set of inputs containing a single solid square of l’s

on a background of U’s. L SQ can be recognized by an FSA which

first checks that the input contiins a single rectangle and

then scans from this rectangle ’s upper—left corner at 45°

toward its opposite corner. If the opposite corner is reached ,

the rectangle is a square , otherwise it is not [ 5 1 .  L
SQ

cannot be recognized by a diameter-limited perceptron which

measures local properties. However , there does exist an

order-limited perceptron for recognizing squares which works

by stratification -- a process of sequentially enumerating

and testing all possible starting positions and side lengths

for a square in the image [2]. Again , neither of these methods

is adaptable for use on a EPA.

A BPA can recognize LSQ in 
0 (log diameter) time by

a modification of its own rectangle algorithm. Each cell C

computes cross sections of its base segment’s boundary rows

and columns. In addition , if C’s base is nonzero C computes

a row and column cross section of the object contained in

its base. This is done as follows : if C’s top and bottom

rows have just been computed to be all zeros and C’s middle

two rows are nonzero , then C’s base bounds the height of the

object. If the object is a rectangle , C outputs one of its

- ~~~1L - 
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middle rows, which is a row cross section of the rectangle .

All cells above C just copy this cross section while computing

their own boundary cross sections. Similarly ,  cells save a

column cross section if a rectangle ’s width is bounded by

their base segment.

When a cell detects a completed rectangle it

simultaneously compares the l’s counts in the horizontal and

vertical cross sections through the rectangle . If they are

equal , a success signal is transmitted to the apex cell,

otherwise a reject signal is sent. The apex cell accepts it2

input image if it receives exactly one accept signal and no

reject signals at time step 2n. The total time required by

this algorithm is 2n ta where t
a 
is the time necessary to

update six cross sections and “mend” together adjacent quadrants

by matching their common boundaries.

Counting the number of rectangles in an input image

by a BPA involves the same problem encountered in local property

counting (Section 3.2). That is, there may be an unbounded

number of rectangles which are detectable only by the apex cell.

The general technique of comparing consecutive row

cross sections used in this subsection is adaptable for

recognizing other fixed-orientation polygons whose boundary

slopes are locally testable. For example , straight line seg-

ments with slopes which are multiples of 450 (with respect to

the boLtom edge of the image ) are digitally realized as

_ _ _

,

~ 
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x x x
x x x  x x x

x x x

0° 45° 90° 135°

There fore , a BPA can recognize 45° r ight  t r iangles with one

side parallel to a side of the base , or diamonds (squares

rotated 45°), by comparing triples of consecutive rows. (Com-

puting the description of the top and bottom two rows of each

by block is sufficient for this test.) Similarly,

straight lines at other fixed orientations relative to the

base ~re characterized by periodic digital segments of bounded

length. A BPA can be constructed to detect these segments ’

slopes by examining a bounded number of cross sections above

and below each input row.

It is an open question whether a BPA can accept

the set of binary images whose l’ s form a convex subset.

However , several necessary conditions for an image to be

convex can be tc-~sted by a BPA. A binary image is row convex

if it is connected and each row contains at most one connected

component . This is a property that can be accepted by a BPA

since it only requires verifying that there is at most one

ru n of l ’ s on each row , and that  the runs of l’ s on any two

adjacent rows overlap. Similarly , a BPA can recognize column

or diagonal convexity .

_ _ _ _ _ _ _ _  —
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4. The Power of PA’s

In this section we investigate the power of PA’s, BPA ’s

and UDPA ’s by comparing their language recognition capabilities

with those of CA’s and FSA ’s. We show that PA ’ s, UDPA ’s and

CA’s are all equivalent. We leave open the question of

whether or not BPA ’s are stronger than FSA ’s on a two-

dimensional tape. 



4.1 PA’s and CA’s

In [1] we showed how a one—dimensional CA can

simulate a one-dimensional PA , each simultation step requiring

O(diazneter) time. This result immediately generalizes to two

dimensions . Clearly PA’s can simulate CA’s since only cells

in the base array have boundary cells as sons. Thus all other

cells can remain in the quiescent state while the base array

copies the transitions of the CA using only state information

from brother cells. If the CA’s upper—lef t  corner cell ever

enters an accept state , the father of the upper—left corner

cell in the PA ’ s base array can detect this and begin propa-

gating an accept signal to the root. Therefore , PA ’ s are

equivalent to CA ’ s.



4.2 BPA ’s and FSA ’s

We have previously shown that ETA ’s are more powerful

than FSA ’ s , and can simulate them in o(log diameter)time.

That result was aided by the fact that two-way nondeterministic

FSA ’s are no more powerful than one—way deterministic ones.

In two dimensions , however , it is know that placing restrictions

on the allowable directions of motion does alter the power of

FSA ’s. (Henceforth , FSA will mean 2—D FSA.)

An FSA on a two-dimensional input tape is a 5-tuple

~~~~~~~~~~~~~~~ where, as in the one—dimensional definition ,

is a nonempty , finite set of states , 
~~~~~~ 

is the set of

input states ( tape symbols) , A
~~
QN is the set of accept states,

and q
0~~

Q is the start state . The state transition function

permits four directions of movement —- up, down , left and right.

Tha t is , 6:QN XQ
T

-*Q
N

x {U ,D,L,R} in the deterministic case ;

ó:QN X 0T 
-+ 2 in the nondeterministic case.

To begin with we will consider a very restricted

type of FSA, namely one that can only do a fixed , “one-way”

scan of its tape. In particular, we show how a EPA can simu-

late an PSA M that can only do a raster (row-major) scan of

its input. Tapes which are not square and whose sizes are not

powers of 2 can be padded with a special tape symbol $ at the

right and bottom and the transition function altered so that

M moves over $‘s without changing states. We assume that M

is deterministic , since clearly one—way nondeterininistic FSA’s

are no more powerful , by the same arguments used to show
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equivalence in the one-dimensional case [6].

Let the state set of M be S={s1,... ‘~ m~
• Each

cell in layer k can be made to count modulo 2k El] and this

counter can be readily modified to act as follows: for the

k-l k—lfirst 2 steps it outputs 0, for the next 2 steps it

outputs 1, and so on, changing from 0 to 1 or 1 to 0 every
k- 12 steps.

At time step 1 each base cell in the EPA constructs

a state transition vector of length m based on the input value

at the cell. Each non-base cell C behaves as follows: when

C’s counter is in state 0 (1) it constructs the composition of

its upper-left (lower-left) and upper-right (lower-right) sons’

transition vectors. Thus a cell in layer 1 alternately com-

poses the transition vectors of its upper two and lower two

sons. A cell in layer 2 composes vectors from its upper

sons at the first two time steps (i.e., the first two rows of

its base) and then at the next two steps computes the row scan

transition Vectors for its third and fourth rows. By induction ,

it follows that a cell in layer k computes left-to-right row

scan transition vectors for the 2k rows in its base in a top

to bottom sequence at times k,k+1,...,k+2k_l; and this process

repeats (modulo

At the same time, cell C in layer k composes the

row scan transition vectors to get a complete raster scan

transition vector for C’s base. This is accomplished by having

C store a second cumulative transition vector. When C’s

~~~~~-_ U 
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counter switches from state 1 to state 0 we must be computing

the vector for C’s top row. Thus at this step we initialize

the raster scan transition vector with the first row ’s vector.

At all other times, we just compose the current row p ’s vector

with the saved raster scan vector to obtain a new raster scan

vector describing M’s movement over the top p rows of input.

In particular , at time ~+2
n_ 1 the apex cell’s raster scan

transition vector describes the state that M ends in after

scanning the base in raster order when starting in any of its

m states. Thus if M’s initial state gives rise to an accepting

state in this vector , the EPA can accept, otherwise it rejects

its input.

If the time required to look up a value in a table

of length k is t(k), then t(IQTI) is the time necessary for

the base cells to initially set up their transition vectors.

An additional (n+2n_1)t(m) time is then required before the

apex cell can decide membership in L (M). Thus t(IQTI) +

(n+21
~—l )t(m) or O(diameter) time ii sufficient. This is

faster than M itself, which requires 0 (area) time to scan its

input. However, a CA can also simulate a raster scan FSA in

O (diameter) time.

Similarly, we can simulate other fixed scanning

sequenou of an FSA , e.g., snake-like or column—major indexed

scans, without significantly altering the construction given

above. The critical knowledge that we have used here, which

is not available in more general FSA ’s, is that the motion of

V - - ‘ - V - V
~~ 
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H is fixed in advance and so it is not necessary to save M’s

position on the tape.

We now return to the general problem: how does a

EPA compare with an FSA which can move to any of its four

adjacent neighbors during a transition? The problem is that

M can enter or leave a given block of base cells at any place

along its boundary , and so the description of M’s behavior on

a block grows with the size of the block. Consequently, we

cannot specify M’s behavior relative to an unbounded size base

segment by a state transition vector of bounded length.

The search for an alternative method is worthwhile ,

however , since the following result shows that a BPA has

sufficient time to distinguish between all possible base

segments. Let m be the number of states in M and let s ~m be

the number of input states. Then clearly the number of possible

by 2k input configurations is D=s . From [1], we know

that a cell in layer k of a EPA (with a 2k by base segment)

can have a state sequence period up to ~ 1(2k)l0~ Tfl
• ~~~ follows

that the total number of distinct sequences of states that a

m ’ (2
k)log m

cell  in layer k can have is bounded from above by P~ n

However, when k >>m we have D <P , implying that a SPA ’s period-

icity is not a limitation on distinguishing between all possible

by input blocks.

In any event, the sets of languages accepted by

BPS’s and FSA ’ s are not the same. The vertically symmetric

palindromes were shown in Section 3.3 to be recognizable by a

-~~~ - - - - V. -__-— - ----—-—
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SPA. Blum and Hewitt have proved [5] that this language

cannot be accepted by an FSA .

I
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4.3 UDPA ’s and PA’s

UDPA ’ s are a simplification of PA’ s in which the

neighborhood definition eliminates all sidewise connections

to brother cells. Though slower for some tasks , we show that

UDPA ’ s are equivalent to PA’S. Clearly, any language that

can be recognized by a UDPA can be recognized by a PA that

ignores its brother links. We now show that any language

recognized by a PA can also be recognized by a UDPA. We

prove this by demonstrating how a UDPA can simulate a CA.

For simplicity , we give the one-dimensional proof; the generali-

zation to the two-dimensions is immediate .

Given a CA with input size N , let n be the smallest

integer such that 2’~ .-N. The input string will be left-

justified in the base of the UDPA with the rightmost 2’~’ -N

cells initialized to the boundary state #.

To simulate a single step of the CA , each UDPA base

cell must have access to the states of its corresponding CA

cell’s two brother cells. Every two cells that are adjacent

in the CA have a least common ancestor (LCA) in the UDPA .

Furthermore , that UDPA cell which is the LCA for an adjacent

pair in the CA cannot be the LICA for any other pair. Therefore ,

every two adjacent cells in the base of a UDPA can simul-

taneously switch state information as follows :

At time step 1, cells in layer 1 copy the pair of

states in their base segments. At time step 2, left (right)

sons in layer 0 copy the right (left) state stored in their

-
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father ’s cell. At the same time cells in layer 2 store the

ordered quadruple of states in their base segments by copying

the state pairs stored in layer 1 cells. Thus at the end of

step 1 N/2 LCA ’s have been found , and at the end of step 2

each base cell knows the state of one of its brothers. At

step 3, left (right) sons in layer 1 copy the third (second)

state stored in their father ’s quadruple of states and mark

it L(R). Also, cells in layer 3 compute their own ordered

quadruple of states by copying the first and fourth members

from their two son’s quadruples. Thus at the end of step 2

N/4 more LCA ’s are found in layer 2. After step 3 the states

of these N/4 adjacent cell pairs have been swapped by the sons

of their LCA ’s. At subsequent steps, any right (left) son of

a father with state marked L(R) copies its father ’s state.

In this  way the state information propagates back down the

UDPA to the proper brother cell.

Simi lar ly ,  state quadruples are computed higher

and higher in the UDPA unti l  every state pair ’s LCA is found.

At time n the root is left with a pair of states corresponding

to the states of the leftmost and rightmost cells in the base.

Consequently , their brothers ’ states are the boundary state #,

and this information can be returned to the proper base cell

in the same manner. Thus simulating one step of a CA takes

2n or 0(log diameter) time for the UDPA.

— . - V V.. ~~~~~~~~~~~~~~~~~ —. — V 
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5. Conclusion

We have extended our study of pyramid cellular acceptors

in this report, treating primarily the acceptance of two-

dimensional properties by bottom-up pyramid acceptors. In

part icular, we have described how BPA ’s can do local property

detection , but not counting. Since PA ’s can count local

properties , the advantage of sidewise connections (at least

in the base) has been established . In addition , we showed

how a BPA can accept two—dimensional palindromes , a language

which is not recognizable by any two-dimensional FSA . While

are shown to accept precisely the class of languages

accepted by CA’ s, it is left open whether BPA ’s can accept

the two-dimensional finite state languages.

Table I summarizes some of the BPA recognition results

and open questions to date for one and two—dimensional

languages.

4
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